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Abstract

In this report, we derive a two stage algorithm to evaluate the storage ca-

pacity of a forgetful neural network using any smooth learning scheme.

In the �rst stage, we evaluate the exponential decay rate of the embed-

ding strengths of memorised patterns. We do this using a generalised form

of Riemann integration taken from recent advances in Domain theory and

the theory of chaotic dynamical systems.

In the second stage, we derive a simple formula to equate the evaluated

decay rate with a corresponding neural network using the so called marginal-

ist learning scheme. This enables us to use a solved Ising model taken from

statistical mechanics to derive the storage capacity.

In order to compare the theoretical predictions with experiment, we take

the parameterised hyperbolic tangent function and the parameterised error

function as concrete examples of the smooth learning scheme.

In summary, we show that the highest attainable storage capacity for

any smooth forgetful neural network is 0:0489585N where N is the total

number of neurons in the system and we derive an algorithm to evaluate the

optimal parameter to achieve this.
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Chapter 1

Introduction

The greatest computer in the world is undoubtedly the human brain. Neu-

ral networks [18] are the study of idealised systems containing very large

numbers of connected neurons deliberately constructed to make use of or-

ganisational principles found in the human brain. In this report, we are

going to use the latest techniques in domain theory to evaluate the storage

capacity of certain kinds of forgetful neural network and compare this with

experiment.

As early as 1943, McCulloch and Pitts [25] showed that any binary logical

operation can be represented by simpli�ed neurons.

In 1949, Hebb [16] suggested that learning may take place by the modi-

�cation of the synaptic couplings between neurons. In other words, memory

resides between neurons and not in the neurons themselves. More speci�-

cally, he suggested that a synapse may be modi�ed according to the temporal

average of the correlated activity of the two neurons it connects. This led

to a variety of models for associative memory and pattern recognition.

In 1954, Cragg and Temperley [7] introduced the analogy between neural

networks and the Ising models of magnetic systems and speculated about

whether biological equivalents could be found for the ideas of temperature

and energy.
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In 1974, Little [23] discovered that noise could be added to a neural

network in such a way that it corresponded to temperature in the Ising

model.

In 1982, Hop�eld [20] �red the public imagination for the �rst time by

explaining how neural networks could be used in practice. This heralded

the modern era of neural networks. He suggested that neural networks learn

patterns by developing a locally stable state in state space for each pattern.

All other states 
ow into these stable states, called attractors. Errors in a

state near to a stable state are corrected as it 
ows into the stable state.

The Hop�eld model is deterministic. A more general model is the Boltz-

mann machine, which is the Hop�eld model with noise. This makes the

Boltzmann machine stochastic. Put another way, the Hop�eld model can

be seen as the zero temperature case of the Boltzmann machine.

Hop�eld made the critical observation that the Boltzmann machine is

isomorphic to the Ising model. The Ising model came from the physics of

spin glass. This has allowed a deluge of physical theory describing spin

glass models to transform the �eld of neural networks. The Ising model has

opened the way for understanding a whole universe of systems consisting of

large numbers of strongly interacting elements.

A spin glass is a special magnetic alloy that exhibits ferromagnetic and

antiferromagnetic properties, such as Manganese Fluoride, or Chromium

Bromide. These properties are con
icting in tendency. This is also an

intrinsic feature of neural networks by which neurons interact synaptically

via intense mixtures of excitatory and inhibitory synapses. This leads to a

system that exhibits many diverse stable states. Such a combination is ideal

for an associative memory and pattern recognition.

In 1987, Amit et al [1] solved the Hop�eld model exactly using the replica

method with the approximation of replica symmetry on the fully connected

Ising model for the limiting case as the number of neurons tends to in�nity.
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The solution reveals that 0:14 is the critical ratio between the number of

stored patterns and the total number of neurons. This value is known as the

storage capacity of the neural network. The retrieval quality is good when

the number of stored patterns is below the critical number, but deteriorates

suddenly above it. This phenomenon is known as catastrophic forgetting.

Hop�eld suggested alternate learning schemes in his original paper [20]

that avoided this catastrophic forgetting. In these learning schemes, new

patterns are learnt at the expense of gradually forgetting previously stored

patterns. These models are called forgetful neural networks. However, there

is a price to pay for this more desirable behaviour. Namely, the storage

capacity is lower than that for the Hop�eld model.

In 1986, Nadal et al [27] explored various learning schemes for forgetful

neural networks including the marginalist scheme and the smooth scheme.

The marginalist learning scheme speci�es that the contribution of each pat-

tern to the synaptic couplings decays exponentially with age. This is a very

attractive learning scheme because it is easily accomplished by an iterative

procedure that is biologically realistic.

In 1986, M�ezard et al [26] formulated and solved a general learning

scheme that incorporated both the Hop�eld model and the marginalist learn-

ing scheme.

The smooth learning scheme speci�es a general iterative procedure for

the synaptic couplings using a restricted class of functions. This scheme is

interesting because it suggests a level of independence between the function

used and the overall properties of the system. This lends support to the idea

that in real neurons the exact shape of the various electrochemical functions,

namely the Hodgkin-Huxley equations [19], may not actually matter.

In 1988, van Hemmen et al [35] analyzed the smooth learning scheme

by interpreting the evolution of the synaptic couplings as a Markov process,

studying its asymptotics and deriving the embedding strength decay rate of
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the stored patterns.

In 1992, Behn et al [4] analyzed the invariant distributions of the synaptic

couplings and showed that they exhibited fractal and multifractal proper-

ties. Interestingly, he showed that the nature of the invariant distribution

undergoes a number of sharp transitions as the parameter associated with

the smooth learning scheme changes, but that this does not e�ect the overall

performance of the neural network.

The embedding strength of a stored pattern is a measure of how well

represented it is in the synaptic couplings and should decrease with time

in a forgetful neural network. However, we will derive computationally the

embedding strength decay rate of the stored patterns using recent advances

in domain theory by Edalat [13, 11, 10, 12].

This may seem like a strange marriage of ideas, since domain theory was

introduced by Dana Scott [30] in 1970 as a mathematical theory of semantics

of programming languages. The rise of domain theory over a quarter of a

century was primarily motivated by the need to solve recursive procedures

and data types in computer science.

In 1993, Edalat found the �rst new application for domain theory, out-

side of denotational semantics, in fractal image decompression [9]. Theo-

retically, he showed that some important areas of mathematics [13] have

natural domain-theoretic computational models.

The key to understanding the leap between the use of domain theory in

denotational semantics and other more esoteric mathematical applications

is in the wider understanding that domain theory provides a means of rep-

resenting in�nite objects in a �nite manner suitable for consumption by a

computer in a sound theoretical way.

Domain theory has provided new ways to represent and manipulate frac-

tals. In contrast to the simple objects manipulated in classical geometry,

such as lines and circles, fractals are very complex objects. Fractals have a
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�ne structure at every magni�cation. Many objects found in nature, such

as ferns and clouds, can be thought of as fractals. Fractals have proved to

be a much more appropriate vehicle for representing natural objects than

traditional geometry.

A Dutch mathematician called Mandlebrot [24] was the �rst person to

use the term fractal from the Latin word fractus, which means fractured or

broken, to describe these new objects.

It is easy to see that the self similarity at di�erent magni�cations in

fractals is a form of recursion and it is this feature that has made it amenable

to a domain-theoretic representation.

In particular, Edalat devised an algorithm [11] to evaluate the expecta-

tion of continuous functions over fractal probability distributions. This is

very pertinent to the problem at hand because it can be shown [12] that

for random stored patterns, the probability distribution of the synaptic cou-

plings is a fractal and evaluating the embedding strength decay rate of the

stored patterns involves calculating the expectation of a certain continuous

function over this probability distribution.

In order to understand how this algorithm works and get a full picture, it

is necessary to start with some fundamental constructs in mathematics. In

Chapter 2, we start by explaining the elementary ideas of domains, metric

spaces and topological spaces. We then proceed to describe a variety of

useful topologies and show how the three elementary ideas above can be

related to each other. We then de�ne the idea of a measure and show how

it can be used to represent a probability distribution. We then proceed

to describe the idea of a valuation [6], which is a restricted version of a

measure. We then bring all this theory together to describe the normalised

probabilistic power domain and show how any probability distribution can

be represented by a sequence of simple valuations.

This leads us to the de�nition of the generalised Riemann integral, which
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will provide our means for evaluating the expectation that we require over

the fractal probability distribution. This is an improvement over standard

Riemann integration, which can only be used to evaluate the expectation of

a continuous function over a continuous probability distribution.

We cannot use Lebesgue integration [36], because although it is ex-

tremely general, it loses the constructive nature of Riemann integration.

However, we have the nice property that when the generalised Riemann

integral does exist, it coincides with its Lebesgue integral [11].

In a nutshell, Riemann integration involves slicing a function vertically

into an ever increasing number of thinner slices and summing them in an

equally weighted manner. This is equivalent to a uniform probability dis-

tribution. Lebesgue integration involves slicing a function horizontally into

an ever increasing number of fragments and summing them according to an

arbitrarily complex probability distribution. Generalised Riemann integra-

tion involves �nding a sequence of increasingly better approximations for

the arbitrarily complex probability distribution consisting of an increasing

number of simple elements and applying them to the function.

We continue by introducing the notion of an iterated function system

with probabilities [17], which has proved to be a very useful way of repre-

senting an interesting class of fractals. In particular we are interested in

the smaller class of weakly hyperbolic iterated function systems with prob-

abilities, because it is su�ciently general for our purposes and Edalat [10]

demonstrated a constructive technique to approximate the fractals that they

generate.

We next introduce the notion of a non-deterministic dynamical system

and demonstrate the vital step made possible be Elton [14], who showed

that its limiting probability distribution is equal to the fractal probability

distribution of its corresponding iterated function systems with probabilities

provided certain criteria are satis�ed.
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In Chapter 3, we will show how the synaptic couplings of a forgetful

neural network is an example of a non-deterministic dynamical system. It

then follows that the synaptic couplings can be represented by a fractal

probability distribution and so we derive a sequence of increasingly better

approximations for the fractal probability distribution.

In Chapter 4, we outline how the embedding strength decay rate of the

stored patterns is derived from the Lyapunov exponent [35, 4, 12] of the non-

deterministic dynamical system that describes the synaptic couplings. The

Lyapunov exponent of a dynamical system is the average exponential rate at

which the resulting motion of the system starting from two slightly di�erent

initial positions depart from each other, assuming that it is exponential.

We then evaluate the embedding strength decay rate of the stored pat-

terns using the generalised form of Riemann integration for various smooth

learning schemes.

In Chapter 5, we give an overview of the fully connected Ising model

and its relationship with neural networks. In particular, we run through

the extremely relevant general learning scheme devised by M�ezard et al [26],

which incorporates both the Hop�eld model and the marginalist learning

scheme.

In Chapter 6, we derive the relationship between the smooth and the

marginalist learning schemes using �rst order di�erential calculus and prob-

ability theory. We then use results established by M�ezard et al [26] with

respect to the marginalist learning scheme to formulate the storage capacity

of the corresponding smooth learning scheme.

We then constructed a 1500 neuron computational model, stored 375

random patterns in the synaptic couplings using various smooth learning

schemes and computed the retrieval quality for each of the last 90 patterns

and showed that they were consistent with the theoretical storage capacity.

Finally, we explored some variations of the smooth learning scheme.
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Chapter 2

Domain theoretic

background

The aim of this chapter is to introduce a generalised form of Riemann in-

tegration as formulated by Edalat [11], which we need later to evaluate the

embedding strength decay rate of the stored patterns in a forgetful neural

network.

For completeness, we will start by reviewing the fundamental ideas be-

hind domain theory, metric spaces and topological spaces. Then we con-

sider various topologies and show how the three fundamental ideas above

are linked together.

2.1 Domains

The term domain is often used in reference to partial orders. A partial

order (or poset) D = (D;vD) is a set D with a binary relation vD which

is re
exive, transitive and anti-symmetric.

Partial orders provide a means of approximating a complex object by

a sequence of simple objects, referred to more technically as a chain. In

particular, they provide a means for representing recursion in computing.
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So when we have two objects x; y 2 D, if x vD y then we can think of x as

an approximation of y or that y contains more information than x. A subset

A of D is a chain if every x; y 2 A satis�es x vD y or y vD x. A is an

!-chain if its elements are countable. Clearly, an !-chain can be numbered

so that

x0 vD x1 vD x2 vD x3 � � �

which we shall denote more concisely by hxiii�0. If the chain has a least

upper bound then in a sense it contains all the information in the chain and

no more.

A subset A of D is directed if every �nite subset of A has an upper bound

in D. Clearly, a chain is directed. The directed subsets of a partial order

provide a useful class of subsets.

This leads to the most important class of partial orders in domain theory,

namely the directed complete partial order. A directed complete partial order

(or dcpo) D = (D;vD) is a poset such that every directed subset A of D

has a least upper bound, denoted
F
A.

The next important thing to consider is maps between directed complete

partial orders. In order to be useful, we need to ensure that information

order and least upper bounds are preserved so that the information analogy

can be carried from one dcpo to another. A map f : D ! E between the

dcpo D = (D;vD) and the dcpo E = (E;vE) is monotone if every x; y 2 D

satis�es f(x) vE f(y) whenever x vD y. If every directed subset A of D

satis�es
F
f(A) = f(

F
A) then f is continuous and interestingly the least

�xed point is given by
F
n f

n(?D). This last property is crucial because in

computer science recursively de�ned objects are in essence the least �xed

point of the recursive de�nition and we have here a constructive technique

to approximate the least �xed point to any required degree of accuracy.

It is also important to be able to distinguish between elements of a dcpo

that contain a �nite and an in�nite amounts of information because it is in
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the nature of computers that they can only handle �nite amounts. Given a

dcpo D = (D;vD), an element a of D is �nite if for every directed subset

A of D whenever a vD

F
A then there exists an element b of A such that

a vD b. The set of all �nite elements of D is denoted KD.

A dcpo D = (D;vD) is algebraic if for every element x of D, the set

fy 2 KD j y vD xg is directed with least upper bound x. This property

ensures that it is su�cient to work with the �nite elements only. It is !-

algebraic if the �nite elements are countable. It is bounded complete if every

bounded subset has a least upper bound. A bounded complete !-algebraic

dcpo is also known as a Scott domain.

Given a dcpo D = (D;vD), an element x of D is way below an element

y of D, denoted x� y, if whenever y vD

F
A, there exists an element z of

A such that x vD z. The way below relation is a generalisation of �niteness

since x is �nite if x� x.

The set of all elements way below x is denoted ##x = fy 2 D j y � xg. A
dcpo D = (D;vD) is continuous if ##x is directed with least upper bound x

for all x 2 D. A subset B of D forms a base for D if ##x\B is directed with

least upper bound x for every element x of D. The dcpo is !-continuous if

has a countable base.

Note that an (!-)algebraic dcpo is an (!-)continuous dcpo due to fact

that the way below relation is a generalisation of �niteness.

2.2 Metric spaces

Metric spaces [32] are important because they allow the degree to which one

elements approximates another to be quanti�ed via a distance function.

A metric space X = (X; dX) consists of a non-empty set X together

with a distance function dX : X �X ! R satisfying

� dX(x; y) � 0
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� dX(x; y) = 0 () x = y

� dX(x; y) = dX(y; x)

� dX(x; y) + dX(y; z) � dX(x; z)

We now de�ne some terminology that will be crucial in making the link

between metric spaces and topological spaces. Given a point x 2 X and a

strictly positive real number �, the open �-ball of x 2 X is the set B�(x) =

fy 2 X j dX(x; y) < �g. A subset O of X is open if given any x 2 O there

exists � > 0 such that B�(x) � O.

A map f : X ! X is contracting if there exists � < 1 such that

dX(f(x); f(y))� � dX(x; y) for all x; y 2 X . Contracting maps gives us the

simplest tool to generate fractals for complete metric spaces as we shall see

later in this chapter when we discuss iterated function systems. They also

have unique �xed points given by the element of the singleton set
T
n f

n(X)

if X is a compact metric space.

2.3 Topological spaces

In many ways, topological spaces [32] provide an alternate perspective of

metric spaces. However, they are even more important than that because

they are in fact a generalisation of metric spaces.

A topological space X = (X;
(X)) consists of a non-empty set X to-

gether with a collection 
(X) of subsets of X satisfying

� X; ; 2 
(X)

� the intersection of any two sets in 
(X) is again in 
(X)

� the union of any collection of sets in 
(X) is again in 
(X)

The collection 
(X) is called a topology for X , and the members of 
(X)

are the open sets of X . A subset C of X is closed if X � C is open.
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A topological space X = (X;
(X)) is Hausdor� if for every distinct

x; y 2 X there exists A;B 2 
(X) such that x 2 A and y 2 B and A\B = ;.
A subcollection B of 
(X) is a basis for 
(X) if every set in 
(X) is

the union of sets from B. X is second countable if it has a countable basis.

A cover C for a set A is a collection of sets such that A � S
B2C B.

The topological space X is compact if every open cover of X has a �nite

subcover. Again this is important because �niteness is an ever reoccurring

concern with computers.

2.4 Various topologies

Any metric space X = (X; dX) gives rise to a topological space X =

(X;
(X)), where 
(X) is de�ned to be the collection of all those sub-

sets which are open in the metric space. This is called the usual topology.

A topological space which arises in this way from a metric space is called

metrizable.

In contrast, the discrete topology of a set X is the collection of all subsets

of X and the indiscrete topology is f;; Xg.
The Scott topology of a dcpo D = (D;vD) consists of Scott open sets O

satisfying

� x 2 O ^ x vD y ) y 2 O

� (8 directed A � D)
F
A 2 O ) O \A 6= ;.

This shows how a dcpo can be used to generate a topological space.

Additionally, the Scott topology of an algebraic dcpo D = (D;vD) has

a base of f"x j x 2 KDg where "x = fy 2 D j x vD yg and the Scott

topology of a continuous dcpo D = (D;vD) has a base of f""x j x 2 KDg
where ""x = fy 2 D j x� yg.

The specialisation ordering vs.o. of a topological space X = (X;
(X))

is de�ned as x vs.o. y if x 2 A implies y 2 A for all A 2 
(X). It can be
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shown that (X;vs.o.) is a preorder and for the Scott topology on a dcpo

D = (D;vD) that vD =vs.o..
We now have a full circle going from dcpo to topological space and back

again through the vehicles of the Scott topology and specialisation ordering

respectively. This will prove very useful when applied to the upper space

topology.

Given any topological space X = (X;
(X)), its upper space UX =

(UX;
(UX)) is de�ned by

� UX is the set of all non-empty compact subsets of X

� f2x j x 2 
(X)g is a base of pow UX where 2x = fy 2 UX j y � xg

If X is a compact metric space with the usual topology then UX with

specialisation ordering is a bounded complete !-continuous dcpo with bot-

tom X . In fact, the specialisation ordering of UX is reverse inclusion.

Note that any compact subspace of a metric space is bounded and any

compact subspace of a Hausdor� space is closed.

2.5 Normalised Borel measures

We are concerned here with normalised Borel measures on topological spaces

because they provide a rigorous framework for studying probability distri-

butions.

The class of Borel sets B(X) of the topological space X = (X;
(X)) is

the smallest collection of subsets of X which contains the open sets 
(X)

and is closed under complements and countable unions. In plain language,

a Borel set is basically any reasonably normal subset.

A Normalised Borel measure � on a topological space X = (X;
(X)) is

a mapping

� : B(X)! [0; 1]

satisfying
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� �(;) = 0

� �(X) = 1

� �(
S
i�0Bi) =

P
i�0 �(Bi) where Bi are disjoint subsets of X .

We denote the set of all normalised Borel measures on X by M1X .

It is plain to see that a normalised Borel measure � represents a random

variable � on the sample space X where given a Borel subset B of X , the

probability that � 2 B is given by

Pf� 2 Bg = �(B). (2.1)

Therefore,M1X represents the set of all probability distributions on the

sample space X .

2.6 Normalised valuations

A normalised valuation is basically a normalised Borel measure whose source

has been restricted to open sets instead of Borel sets. Conversely, it can be

seen that any normalised valuation extends uniquely to a normalised Borel

measure on certain nice spaces such as compact metric spaces.

This di�erence a�ects the de�nition because the subtraction of one open

set with another is not an open set.

De�nition 2.6.1 (Normalised valuation)

A normalised valuation � on a topological space X = (X;
(X)) is a mapping

� : 
(X)! ([0; 1];�)

satisfying

� �(;) = 0

� �(X) = 1
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� �(a) � �(b) if a � b

� �(a) + �(b) = �(a [ b) + �(a \ b)

Intuitively, in order for a valuation to be computable, it must be con-

tinuous. A valuation on a topological space X = (X;
(X)) is continuous if

every directed subsets A of 
(X) satis�es

�

 [
O2A

O

!
= sup

O2A
�(O).

We need to construct a sequence of approximations for a valuation. Let

us start by considering the simplest valuation of all. For any x 2 X , the

point valuation �x at x is the mapping �x : 
(X)! ([0; 1];�) de�ned by

�x(O) =

8><
>:

1 if x 2 O

0 otherwise
. (2.2)

These point valuations can be combined to give simple valuations. A

simple valuation is any �nite linear combination

nX
i=0

ri�xi

of point valuations where ri 2 (0; 1] and
Pn

i=0 ri = 1.

We shall see in the next section that in certain situations, simple valua-

tions are su�ciently complex to provide an approximation of any valuation

to any desired degree of accuracy.

2.7 Normalised probabilistic power domains

Finally, before we actually tackle the generalised Riemann integral itself,

we examine the most complex structure which underpins it, namely the

normalised probabilistic power domain.

De�nition 2.7.1 (Normalised probabilistic power domain)

Given a topological space X = (X;
(X)), its normalised probabilistic power

domain P1X = (P 1X;vP 1X) is de�ned by
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� P 1X is the set of all normalised continuous valuations � on X

� � v P 1X� if �(O) � �(O) for all O 2 
(X)

Every normalised probabilistic power domain is a dcpo.

In addition, it has been shown by Edalat [11] that if the topological

space X is derived from an !-continuous dcpo with bottom ? using the

Scott topology then P1X is an !-continuous dcpo with bottom �? and with

a basis consisting of all the simple valuations on X [11].

If X is a compact metric space then (UX;�) is an !-continuous dcpo

and so P1UX is an !-continuous dcpo.

The critical observation made by Edalat [13] was that the maximal el-

ements of the normalised probabilistic power domain of UX where X is a

compact metric space with the usual topology contains all the normalised

Borel measures �ltered through the singleton map. The singleton map

s : X ! UX embeds X onto the set of maximal elements of UX .

This is good news because P1UX is an !-continuous dcpo. Therefore

given any normalised Borel measure, there exists a chain of simple valuations

whose least upper bound �ltered through the singleton map extend uniquely

to it.

More technically speaking, let us consider the precise maximal elements

of interest. A valuation � 2 P 1UX is supported in s(X) if its unique ex-

tension to a normalised Borel measure on UX satis�es �(s(X)) = 1. The

support of � is the set of points x 2 s(X) such that �(O) > 0 for all

x 2 O 2 pow UX . Let S1X be the set of all normalised valuations sup-

ported in s(X). Then M1X is isomorphic with S1X with isomorphism

e : M1X ! S1X

� ! � � s�1.

It is not known at the time of writing whether S1X includes all the

maximal elements of the power domain.
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2.8 Generalised Riemann Integration

The aim of the generalised form of Riemann integration is to provide a

constructive technique to obtain the value of the integral of bounded real

valued functions with respect to normalised Borel measures on compact

metric spaces.

We observe from the last section that a normalised Borel measure can

be obtained as the least upper bound of an !-chain of simple valuations.

This leads naturally to a sequence of increasingly better approximations to

the value of an integral.

Let g : X ! R be a continuous real valued function on a compact metric

space X = (X; dX).

Let � be a normalised Borel measure. It corresponds to a unique valu-

ation � � s�1 2 S1X � P 1UX [11, Theorem 2.15]. Since P1UX is an !-

continuous dcpo, there exists a chain h�iii�0 of simple valuations �n 2 P 1UX

such that � � s�1 = F
n�0 �n.

De�nition 2.8.1 (Generalised upper and lower Riemann sum)

For any simple valuation

� =
X
a2A

ra�a 2 P 1UX (2.3)

the generalised upper Riemann sum of g with respect to � is

SuX(g; �) =
X
a2A

ra supfg(x) j x 2 ag (2.4)

and the generalised lower Riemann sum of g with respect to � is

SlX(g; �) =
X
a2A

ra inffg(x) j x 2 ag. (2.5)

The full unexpedited de�nition of generalised Riemann integration [11,

De�nition 4.5] will not be described here. However, the generalised Rie-

mann integral of any continuous function g : X ! R with respect to any
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normalised Borel measure on a compact metric space X exists [11, Theorem

6.1] and is given by [11, Proposition 4.9]

R

Z
g d� = lim

n!1 SuX(g; �n) = lim
n!1SlX(g; �n). (2.6)

In fact, it can also be shown that SuX(g; �n) and SlX(g; �n) are monoton-

ically decreasing and increasing respectively [11, Corollary 4.10].

SuX(g; �n)& R

Z
g d�- SlX(g; �n) (2.7)

as n!1. Also, it is Lebesgue integrable and the two integrals coincide [11,

Theorem 7.2] Z
g d� = L

Z
g d� = R

Z
g d�. (2.8)

Therefore, provided that g can be analyzed su�ciently, so that the supre-

mums and in�mums in equations 2.4 and 2.5 can be evaluated exactly, the

upper and lower Riemann sums can be evaluated for increasing n according

to equation 2.7 until the desired accuracy is achieved.

2.9 Iterated function systems with probabilities

In 1981, Hutchinson [21] showed how a useful class of fractals could be

represented by so called iterated function systems (or IFS).

De�nition 2.9.1 (Iterated function system with probabilities)

An iterated function system with probabilities fX ; f1; : : : ; fN ; p1; : : : ; pNg is
given by a �nite number of continuous maps fi : X ! X(1 � i � N)

on a compact metric space X = (X; dX), such that each fi is assigned a

probability pi where 0 < pi < 1 and
PN

i=0 pi = 1.

In order to make theoretical progress, it is necessary to consider restricted

classes of iterated function systems. The most fruitful class over the last few

years has proved to be the hyperbolic iterated function system.
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De�nition 2.9.2 (Hyperbolic IFS)

An iterated function system fX ; f1; : : : ; fNg is hyperbolic if f1; : : : ; fN are

contracting maps.

However, this is too restricting for our purposes. So we have to consider

something more general, namely the weakly hyperbolic iterated function

system, which was coined and studied by Edalat [10].

De�nition 2.9.3 (Weakly hyperbolic IFS)

An iterated function system fX ; f1; : : : ; fNg is weakly hyperbolic if every

in�nite sequence i1; : : : 2 f1; : : : ; Ng satis�es

lim
n!1 jfi1 � � �finX j = 0. (2.9)

Clearly, every hyperbolic IFS is a weakly hyperbolic IFS.

It has been shown [10] that every weakly hyperbolic IFS with probabil-

ities has a unique invariant measure with fractal characteristics given by G
n

Hn�X

!
� s (2.10)

where

Hn�X =
NX

i1 ;:::;in=1

pi1 � � �pin�fi1 ���finX (2.11)

whose support is the unique attractor of the IFS. This is exactly in the form

we require for use in generalised Riemann integration.

2.10 Non-deterministic dynamical systems

We next introduce the non-deterministic dynamical system, which will form

the theoretical bridge between iterated function systems and the synaptic

couplings of a forgetful neural network using the smooth learning scheme.

Given an IFS with probabilities fX ; f1; : : : ; fN ; p1; : : : ; pNg the corre-

sponding non-deterministic dynamical system is the iterative orbit of a single
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point in X , in which at each iteration a map fi is selected with probability

pi.

In 1986, Elton [14] made the important observation that the time average

of a continuous function g for almost all initial points x 2 X and for almost

all sequences i1; i2; : : :2 f1; : : : ; Ng tends with probability one to its integral
with respect to the unique invariant measure of the IFS

lim
n!1

1

n + 1

nX
m=0

g(fim � � �fi1(x)) =
Z
g d� (2.12)

provided that there exists r < 1 such that

NY
i=1

dX(fi(x); fi(y))
pi � rdX(x; y) (2.13)

for all x; y 2 X . This is known as Elton's Ergodic Theorem because it

implies that the dynamics is ergodic meaning phase space averages are the

same as time averages.
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Chapter 3

Fractal probability

distribution of synaptic

couplings

In this chapter, we show that the synaptic couplings of a forgetful neural

network using the smooth learning scheme can be represented by a fractal

probability distribution and derive a sequence of increasingly better approxi-

mations for this distribution. In the next chapter we will use this sequence of

approximations to evaluate the embedding strength decay rate of the stored

patterns using the generalised form of Riemann integration described in the

last chapter.

3.1 Forgetful neural networks using smooth learn-

ing scheme

A forgetful neural network consists of N fully connected neurons. Each

neuron is a processing unit with one output xi and N � 1 inputs connected

to the outputs of each of the other neurons. Each output xi is either in the
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�ring state (xi = 1) or in the quiescent state (xi = �1). Each connection

from neuron j to neuron i is determined by the synaptic coupling parameter

Jij . If Jij is negative, zero or positive then the connection is inhibitory, void

or excitatory respectively. Each neuron updates its output asynchronously

according to the following rule

xi becomes

8><
>:

1 if
PN

j=1 Jijxj > 0

�1 otherwise
. (3.1)

The network should work as an associative memory. In other words, if

the network is set to a stored pattern (or close to) then it should relax under

the dynamics described above towards a close stationary state. Proximity

is measured by the overlap between the stored pattern and the stationary

state and is called the retrieval quality.

The overlap m between two patterns x, y is the ratio of di�ering bits to

the total number of bits and it is easy to see that it is given by

m =
1

N

NX
i=1

xiyi (3.2)

and the fraction of errors is 1
2(1�m).

Assuming that the synaptic couplings are symmetric, as suggested by

Hop�eld, the Hamiltonian of the network is the energy given by

H = �1

2

NX
i;j=1

Jijxixj . (3.3)

This means that the state of the network moves on the energy landscape

to the local minima that should correspond to one of the stored patterns.

The simplest storage prescription for M patterns Xm(1 � m � M),

which corresponds to the Hop�eld model, is

Jij =
1

N

MX
m=1

Xm
i X

m
j . (3.4)

This prescription works very well for low storage levels, but su�ers from

catastrophic forgetting when M > 0:14N . Above this level, only a negligible

number of patterns are remembered.
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The forgetful storage prescription is given by the local iterative procedure

Jmij =
1

N
�(NJm�1ij + �Xm

i X
m
j ) (3.5)

where J0
ij = 0 and Jij = JMij . Here J

m
ij represents the stored information up

to and including patternm. This prescription avoids catastrophic forgetting

by gradually forgetting the oldest patterns.

The fact that the forgetful storage prescription is nonlinear [33, 34] in

contrast to the Hop�eld model makes the analysis more complex.

We are going to concentrate on the smooth learning scheme [35] in which

the function � is assumed to be odd (�(�x) = ��(x)), monotonically in-

creasing and strictly concave for x > 0 (�00(x) < 0) and �0(0) = 1.

In chapter 5, we will consider the marginalist learning scheme [26] where

�(x) = exp
�
� "2

2N

�
x.

If we set xm = NJmij and hm = Xm
i X

m
j [12] then equation 3.5 reduces

to

xm+1 = �(xm + �hm) (3.6)

with x0 = 0.

Assuming that the stored patterns are random, this means that hm is

a random variable, which is equal to 1 with a probability of 1
2 and is equal

to �1 with a probability of 1
2 . Therefore, in the limit as M ! 1, this is a

non-deterministic dynamical system corresponding to the iterated function

system with probabilities f[x�; x+];�+; ��; 12 ; 12g where ��(x) = �(x � �)

and x� is the least �xed point of ��.

For the sake of de�niteness, when required, we are going to consider

�(x) = tanh(x) (3.7)

and

�(x) = erf

 p
�

2
x

!
(3.8)
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with

� =
k

N
. (3.9)

We are now in a position to derive an approximating sequence for the

fractal probability distribution � that describes the synaptic couplings.

� =

 G
n

�n

!
� s (3.10)

where

�n =
1

2n

X
i1;:::;in2f+;�g

��i1 ����in [x�;x+]. (3.11)

But, �+ and �� are monotonically increasing functions, therefore

�n =
1

2n

X
i1;:::;in2f+;�g

�[�i1 ����in(x�);�i1 ����in (x+)]. (3.12)

This means that we only need to consider the orbits of the two points x+

and x�.

3.2 Existence of the fractal probability distribu-

tion

In this section, we are going to show that the fractal probability distribution

associated with � exists and is unique.

In order to demonstrate this, it is su�cient to show that the correspond-

ing iterated function system with probabilities is weakly hyperbolic and then

the result follows from section 2.9

Before we start, we will state and prove two useful propositions.

Proposition 3.2.1

Given an IFS with probabilities fX ; f1; : : : ; fN ; p1; : : : ; pNg if there exists an
integer r � 1 such that fi1 � � � � � fir is a contracting map for all sequences

i1; : : : ; ir 2 f1; : : : ; Ng then the IFS is weakly hyperbolic.
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Proof

Since X = (X; dX) is a compact metric space and every compact metric

space is bounded, there existsK � 0 such that dX(x; y) � K for all x; y 2 X .

Since fi1 � � � � � fir is a contracting map for all sequences i1; : : : ; ir 2
f1; : : : ; Ng, there exists �i1���ir < 1 such that

jfi1 � � �fir(x)� fi1 � � �fir (y)j � �i1���ir jx� yj.

Let � = maxf�i1���ir j i1; : : : ; ir 2 f1; : : : ; Ngg. Clearly � < 1 and

jfi1 � � �fir (x)� fi1 � � �fir(y)j � �K.

So, given any � > 0, choose an integer

n >
log � � log (2K + 1)K

log �

and any m � rn. Then

jfi1 � � �fim(x)� fi1 � � �fim(y)j � jfi1 � � �fim(x)� fi1 � � �firn(x)j+

jfi1 � � �firn(x)� fi1 � � �firn(y)j+
jfi1 � � �firn(y)� fi1 � � �fim(y)j

� (K + 1 +K)�nK

< �

for all x; y 2 X . �

Proposition 3.2.2

Given a map f : [a; b]! R such that f and f 0 are continuous over [a; b], if

jf 0(x)j < 1 for all x 2 [a; b] then f is contracting.

Proof

f 0 attains its supremum and in�mum because [a; b] is compact and f 0 is

continuous. Therefore, there exists � < 1 such that

jf 0(x)j � �.

25



Therefore, for all x; y 2 [a; b], there exists z 2 (a; b), such that

f(x)� f(y) = f 0(z)(x� y)

by the mean value theorem. Therefore

jf(x)� f(y)j � �jx� yj.

�

Now we need to show that the iterated function system with probabil-

ities given by f[x�; x+];�+; ��; 12 ; 12g where ��(x) = �(x � �), is weakly

hyperbolic.

Using di�erential calculus, we have

�0++(x) = �0(x+ �)�0(�(x+ �) + �)

�0+�(x) = �0(x+ �)�0(�(x+ �)� �)

�0�+(x) = �0(x� �)�0(�(x� �) + �)

�0��(x) = �0(x� �)�0(�(x� �)� �)

where

�++(x) = �(�(x+ �) + �)

�+�(x) = �(�(x+ �) � �)

��+(x) = �(�(x� �) + �)

���(x) = �(�(x� �) � �).

Notice that �0(x) > 0 because � is monotonically increasing, odd and

strictly concave for x > 0. Also, �0(x) < 1 for x 6= 0 because � is odd,

strictly concave for x > 0 and �0(0) = 1. Therefore, 0 < �0��(x) � 1.

Also, �(0) = 0 because � is odd and continuous.

However, if �0��(x) = 1 then x = �� and �(x � �) = �(0) = 0 and so

� = 0. But � > 0, so �0��(x) < 1 by contradiction.
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Therefore by proposition 3.2.2, �++, �+�, ��+ and ��� are contracting

maps. Therefore by proposition 3.2.1, the iterated function system with

probabilities f[x�; x+];�+; ��; 12 ; 12g is weakly hyperbolic. This proves that

all smooth learning schemes give rise to a unique fractal probability distri-

bution.
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Chapter 4

Embedding strength decay

rate of stored patterns

An important physical quantity in a forgetful neural network is the embed-

ding strength decay rate of the stored patterns. It will be shown later how

this is related to the storage capacity of the neural network.

4.1 Embedding strengths of stored patterns

The embedding strength of pattern Xm is de�ned as

em =
1

N

NX
i;j=1

JijX
m
i X

m
j . (4.1)

We know that the embedding strengths of all stored patterns decay to

zero as further patterns are subsequently stored by virtue of the properties

of a forgetful neural network.

Also, it would seem reasonable that this decay is exponential on aver-

age when large numbers of patterns have been previously stored because all

patterns are homogeneous in character. This leads e�ectively to investigat-

ing [35, 4, 12] the Lyapunov stability of the neural network, where the decay

rate is called the Lyapunov exponent.
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Therefore, in the limiting case as n!1, we have

em � exp(
n) (4.2)

where n = M+1�m and 
 is the average Lyapunov exponent. This average

Lyapunov exponent is also called the embedding strength decay rate, which

we expect to be a negative number.

4.2 Average Lyapunov exponent

Generally speaking, the Lyapunov exponent [22, 28] of a dynamical system

is the average exponential rate at which the resulting motion of the system

starting from two slightly di�erent initial positions depart from each other,

assuming that it is exponential.

In this particular case, the embedding strengths are asymptotically at-

tracted to the same point, namely zero, regardless of the initial conditions,

namely the stored pattern.

Recall that we are considering the non-deterministic dynamical system

corresponding to the IFS with probabilities f[x�; x+];�+; ��; 12 ; 12g where

��(x) = �(x � �), x� is the least �xed point of �� and � is odd (�(�x) =
��(x)), monotonically increasing and strictly concave for x > 0 (�00(x) < 0)

and �0(0) = 1.

So, there is a single average Lyapunov exponent which is independent

of x and the in�nite sequence i1; i2; : : : 2 f+;�g such that for large n and

small dx

j�in � � ��i1(x+ dx)� �in � � ��i1(x)j � dx exp(
n). (4.3)

Therefore


 = lim
n!1 lim

dx!0

1

n
log

�����in � � ��i1(x+ dx)� �in � � ��i1(x)
dx

����
= lim

n!1
1

n
log

���� ddx�in � � ��i1(x)
����
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= lim
n!1

1

n+ 1
log

nY
m=0

����0im+1�im � � ��i1(x)
���

= lim
n!1

1

n+ 1

nX
m=0

log
����0im+1�im � � ��i1(x)

���
by the de�nition of di�erentiation and the chain rule. So


 = lim
n!1

1

n+ 1

nX
m=0

log�0+

8><
>:

�im � � ��i1(x) if im+1 = +

��im � � ���i1(�x) if im+1 = �

= lim
n!1

1

n+ 1

nX
m=0

log�0+�im � � ��i1(x)

= lim
n!1

1

n+ 1

nX
m=0

g(�im � � ��i1(x))

where

g(x) = log�0+(x) (4.4)

due to �0� � 0, �+(�x) = ���(x), �0+(�x) = �0�(x) and the independence

property.

So, by equation 2.12 and 2.13 from Elton's ergodic theorem [14]


 =
Z
g(x) d�(x) (4.5)

where � is the unique invariant measure of the iterated function systems

with probabilities f[x�; x+];�+; ��; 12 ; 12g provided that there exists � < 1

such that

j�+(x)� �+(y)j
1

2 j��(x)� ��(y)j
1

2 � �jx� yj (4.6)

for all x 2 [x�; x+].

Before we prove that this condition is satis�ed, we will state and prove

a proposition that we will need.

Proposition 4.2.1

Given an iterated function system with probabilities

f[a; b]; f1; : : : ; fN ; p1; : : : ; pNg
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where f 01; : : : ; f
0
N are continuous over [a; b], if

NY
i=1

jf 0i(x)jpi < 1 (4.7)

for all x 2 [a; b] then there exists � < 1 such that

NY
i=1

jfi(x)� fi(y)jpi � �jx� yj (4.8)

for all x; y 2 [a; b].

ProofQN
i=1 jf 0i(x)jpi attains its supremum because [a; b] is compact and f 01; : : : ; f 0N

are continuous. Therefore, there exists � < 1 such that

NY
i=1

jf 0i(x)jpi � �.

Therefore, for all x; y 2 [a; b] and i 2 f1; : : : ; Ng, there exists zi 2 (a; b)

such that

fi(x)� fi(y) = f 0i(zi)(x� y)

by the mean value theorem. Therefore

NY
i=1

jfi(x)� fi(y)jpi =
NY
i=1

jf 0i(zi)(x� y)jpi

= (
NY
i=1

jf 0i(zi)jpi)jx� yj
P

N

i=1
pi

� �jx� yj.

�

Returning to the problem in hand, we know that 0 < �0+(x) < 1 for

x 6= �� and 0 < �0�(x) < 1 for x 6= �. Therefore, 0 < �0+(x)�0�(x) < 1

because e > 0 and so

j�0+(x)j
1

2 j�0�(x)j
1

2 < 1. (4.9)

Hence, using proposition 4.2.1 on the interval [x�; x+], condition 4.6 is

satis�ed. Therefore, equation 4.5 is valid for all smooth learning schemes.
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4.3 Algorithm to compute the Lyapunov exponent

Using the theory so far, we can derive an algorithm for the Lyapunov expo-

nent.

From equations 4.5, 2.7 and 2.8

Sl[x
�

;x+](g; �n) � 
 � Su[x
�

;x+](g; �n) (4.10)

where from equations 2.4, 2.5 and 3.12 the generalised upper and lower

Riemann sums are

Su[x
�

;x+]
(g; �n) =

1

2n

X
i1;:::;in2f+;�g

sup g[�i1 � � ��in(x�); �i1 � � ��in(x+)] (4.11)

Sl[x
�

;x+](g; �n) =

1

2n

X
i1;:::;in2f+;�g

inf g[�i1 � � ��in(x�); �i1 � � ��in(x+)] (4.12)

where we recall that g(x) = log �0+(x), ��(x) = �(x � �), x� is the least

�xed point of �� and � is odd (�(�x) = ��(x)), monotonically increasing

and strictly concave for x > 0 (�00(x) < 0) and �0(0) = 1 and so

g0(x) =
�00+(x)
�0+(x)

.

Therefore, it follows that g(x� �) is even with respect to x (g(x� �) =

g(�x� �)) and g0(x) < 0 for x > �� and g0(x) > 0 for x < �� and g0(x) = 0

for x = ��.
Therefore

sup g[a; b] =

8>>>><
>>>>:

g(a) if a > ��
g(b) if b < ��
g(��) otherwise

(4.13)

inf g[a; b] =

8><
>:

g(a) if ja+ �j > jb+ �j
g(b) otherwise

. (4.14)
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To summarise so far, the algorithm entails calculating the generalised

upper and lower Riemann sums given by equations 4.11, 4.12, 4.13 and 4.14

for n large enough so that the di�erence between the sums is less than

or equal to a given maximum allowed error �, since we know that 
 lies

somewhere between them.

So, it only remains to determine a value for n such that

Su[x
�

;x+](g; �n)� Sl[x
�

;x+](g; �n) � �. (4.15)

Note that evaluating the generalised upper and lower Riemann sums

involves calculating O(2n) 
oating point expressions.

Therefore, evaluating the generalised upper and lower Riemann sums

starting from n = 1 and incrementing by one until the di�erence drops to

the desired accuracy � would require approximately twice as much time as

it would if the required n was already known.

There are various heuristic possibilities for improving on this, but they

tend to be problem dependent. The one that we employed involves evaluat-

ing the generalised upper and lower Riemann sums for three values of n, two

�xed and one variable. It is based on the assumption that the gap decreases

exponentially on \average".

Choose n1 and n2 low enough so that the evaluation of the generalised

upper and lower Riemann sums is quick, but not so low that the word

\average" in the above assumption becomes meaningless. De�ne ei as

ei = log
�
Su[x

�

;x+](g; �ni)� Sl[x
�

;x+](g; �ni)
�
.

Then, solving the appropriate simultaneous equations

n3 =

�
(n1 � n2) log � + e1n2 � e2n1

e1 � e2

�
(4.16)

where dae denotes the least integer greater than or equal to a.

Also, de�ne li and ui as

li = Sl[x
�

;x+](g; �ni)
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ui = Su[x
�

;x+]
(g; �ni)

As an illustrative example for the remainder of this section, we will take

�(x) = tanh(x), � = 1:0 and � = 0:000001.

So choosing n1 = 6 and n2 = 7, we have

e1 = �1:4963053
e2 = �1:8143737

n3 = 21

l3 = �1:09399808
u3 = �1:09399753.

We will discuss here two other methods for estimating n, but unless it

is equal to or one greater than the optimal n it is of purely academic value

for this problem.

The �rst method relies on the fact that �++, �+�, ��+ and ��� as

de�ned and shown in section 3.2 are contracting maps and therefore, the

IFS

f[x�; x+];�++; �+�; ��+; ���;
1

4
;
1

4
;
1

4
;
1

4
g

is hyperbolic. So, if g satis�es a Lipschitz condition, then we can obtain a

�nite algorithm to calculate the integral to any given accuracy [10]. Suppose

there exists k > 0 and c > 0 such that

jg(x)� g(y)j � cjx� yjk

for all x; y 2 [x�; x+]. Then equation 4.15 is satis�ed for

n =

2
666

1
k
log
�
�
c

�
� log jX j

log s

3
777 (4.17)

where s is the square root of the contractivity of the above hyperbolic IFS.

In fact, g is an analytic function. Therefore

jg(x)� g(y)j � cjx� yj
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for c = maxx
�

�x�x+ jg0(x)j. So

c = 2:57527

k = 1

jX j = 1:92236

s = 0:773724

n = 61

Clearly, this upper bound for n is too generous to be useful.

The second method is based on a proposition by Edalat [12, Proposition

2.2]. In summary, there exists n � 0 such that

k

2n
<

�

2

where k is the number of sequences i1; : : : ; in 2 f+;�g of length n such

that the diameter of the set �i1 � � ��in [x�; x+] is at least �
2c . In which case,

equation 4.15 holds. However, for n = 21, k = 201448 and therefore � >

0:192116. This is a long way from 0:000001 and so again, this method falls

short of being practical for this application.

4.4 Asymptotes of the smooth learning scheme

Let us consider analytically the Lyapunov exponent for small �. Maclaurin's

expansion for �(x) is

�(x) =
1X
n=0

1

n!
�(n)(0)xn

where

�(n) =
dn

dxn
�(x).

However, � is odd, therefore �(n)(0) = 0 for n even. For n odd, let r be

the least odd number greater than 1 such that �(r)(0) 6= 0 and since � is

strictly concave for x > 0 this means that �(r)(0) < 0. So, that gives

�(x) = x+
1

r!
�(r)(0)xr + O(xr+2).
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We know that x+ satis�es

x+ = �(x+ + �)

and the inverse of � is well de�ned because � is monotonically increasing,

therefore

� = ��1x+ � x+

� ��
(r)(0)

r!
xr+ + O(xr+2

+ ).

Therefore, it can be shown that

x+ � �
�

r! �

�(r)(0)

� 1

r

+ O(�
3

r ).

Therefore

Su[x
�

;x+](g; �0) = g(��)

= log�0(0)

= 0

Sl[x
�

;x+]
(g; �0) = g(x+)

� r

 
�(r)(0)

r!

! 1

r

�
r�1

r +O(�
r+1

r ).

Therefore, for su�ciently small �

(r+ 1)

 
�(r)(0)

r!

! 1

r

�
r�1

r < 
(�) � 0.

In other words, 
 ! 0 as �! 0.

4.5 Asymptotes of the hyperbolic tangent learning

scheme

For the hyperbolic tangent learning scheme

�(x) = tanh(x) (4.18)

g(x) = �2 log cosh(x+ �). (4.19)
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Figure 4.1: Plot of Sl[�1;1](g; �n) and S
u
[�1;1](g; �n) against � for the hyperbolic

tangent learning scheme where the two curves are nearly indistinguishable

Let us consider analytically the Lyapunov exponent for large �. The

support of the invariant measure is in [x�; x+], therefore
Z
g(x) d�(x) =

Z
h(x) d�(x)

where

h(x) =

8><
>:

g(x) if x 2 [x�; x+]

0 otherwise
.

But, for x 2 [x�; x+] and � large

g(x) � �2 log
�
exp �

2

�

= log 4� 2�.

Therefore 
(�) � log 4� 2� for large �.

Some of the computed results for various � and n are listed in table 4.1

with the associated graph shown in �gure 4.1. Notice that n has to be

increased as � decreases in order to maintain accuracy. However, due to
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Figure 4.2: Plot of h(Sl[�1;1](g; �n)) and h(Su[�1;1](g; �n)) against � for the

hyperbolic tangent learning scheme

limited computational power n had to be restricted to the maximum value

of 26.

The Lyapunov exponent is between Sl[�1;1](g; �n) and Su[�1;1](g; �n). Fig-

ure 4.2 shows the graph of h(Sl[�1;1](g; �n)) and h(Su[�1;1](g; �n)) against �

where

h(x) =
x+ 2�

� log 4
. (4.20)

The 4th-degree polynomial least-squares �t to the data between � = 0:4

and � = 3:0 is

0:846879� 0:151116 �� 0:0705225 �2+ 0:0320542 �3� 0:00364559 �4. (4.21)

Figure 4.3 shows the graph of h(Sl[�1;1](g; �n)), h(S
u
[�1;1](g; �n)) and equa-

tion 4.21, against � in the critical region where the data diverges.

Therefore


(�) � (0:846879 log4� 2)�

38



n � Sl[�1;1](g; �n) Su[�1;1](g; �n)

26 0.1 -0.131913 -0.038778

26 0.2 -0.193185 -0.155600

26 0.3 -0.274155 -0.263971

26 0.4 -0.370240 -0.367999

26 0.5 -0.475128 -0.474708

26 0.6 -0.586711 -0.586643

26 0.7 -0.704538 -0.704528

26 0.8 -0.828478 -0.828477

23 0.9 -0.958360 -0.958359

20 1.0 -1.093998 -1.093997

18 1.1 -1.235260 -1.235259

16 1.2 -1.382036 -1.382035

14 1.3 -1.534179 -1.534177

13 1.4 -1.691454 -1.691452

12 1.5 -1.853548 -1.853547

11 1.6 -2.020089 -2.020087

10 1.7 -2.190682 -2.190680

10 1.8 -2.364935 -2.364934

10 1.9 -2.542478 -2.542478

10 2.0 -2.722967 -2.722967

10 2.1 -2.906085 -2.906085

10 2.2 -3.091543 -3.091543

10 2.3 -3.279073 -3.279073

10 2.4 -3.468428 -3.468428

10 2.5 -3.659384 -3.659384

Table 4.1: Computed values of Sl[�1;1](g; �n) and Su[�1;1](g; �n) for various �

and n for the hyperbolic tangent learning scheme
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Figure 4.3: Plot of equation 4.21, h(Sl[�1;1](g; �n)) and h(Su[�1;1](g; �n))

against � in the critical region for the hyperbolic tangent learning scheme

� �0:825976 � (4.22)

em � exp(�0:826n�)
� exp

���(tanh)kn
N

�
(4.23)

where

�(tanh) = 0:826. (4.24)

Note that the grey vertical lines in �gures 4.1, 4.2 and 4.3 correspond to

the following critical values for � evaluated by Behn et al [4]:

�
(1)
c = 0:957

�
(2)
c = 0:174

�
(3)
c = 0:064

For � > �
(1)
c , the support of the invariant distribution is a fractal, while

for � < �
(1)
c , the support of the invariant distribution is the whole interval

[x�; x+].
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For � > �
(2)
c , the invariant distribution is in�nite at the boundaries of

it's support, while for � < �
(2)
c , the invariant distribution is zero at the

boundaries of it's support,

For � > �
(3)
c , the invariant distribution has an in�nite gradient at the

boundaries of it's support, while for � < �
(3)
c , the invariant distribution has

a zero gradient at the boundaries of it's support,

So, although the invariant distribution has sudden changes in character

at these three critical values, it does not appear to manifest itself as kinks

or discontinuities in the evaluation of the average Lyapunov exponent.

4.6 Asymptotes of the error function learning scheme

For the error function learning scheme

�(x) = erf

 p
�

2
x

!
(4.25)

g(x) = ��
4
(x+ �)2. (4.26)

Let us consider analytically the Lyapunov exponent for large �. The

support of the invariant measure is in [x�; x+], therefore

Z
g(x) d�(x) =

Z
h(x) d�(x)

where

h(x) =

8><
>:

g(x) if x 2 [x�; x+]

0 otherwise
.

But, for x 2 [x�; x+] and � large

g(x) � ��
4
�2.

Therefore 
(�) � ��
4 �

2 for large �.

Some of the computed results for various � and n are listed in table 4.2

with the associated graph shown in �gure 4.4. Notice that n has to be
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Figure 4.4: Plot of Sl[�1;1](g; �n) and Su[�1;1](g; �n) against � for the error

function learning scheme where the two curves are nearly indistinguishable

increased as � decreases in order to maintain accuracy. However, due to

limited computational power n had to be restricted to the maximum value

of 26.

The Lyapunov exponent is between Sl[�1;1](g; �n) and Su[�1;1](g; �n). Fig-

ure 4.5 shows the graph of h(Sl[�1;1](g; �n)) and h(Su[�1;1](g; �n)) against �

where

h(x) =

(�)

�
+
�

4
�. (4.27)

The 4th-degree polynomial least-squares �t to the data between � = 0:3

and � = 3:0 is

�0:742225+ 2:89879 �� 0:281287 �2+ 0:0673135 �3� 0:00527905 �4. (4.28)

Figure 4.6 shows the graph of h(Sl[�1;1](g; �n)), h(S
u
[�1;1](g; �n)) and equa-

tion 4.28, against � in the critical region where the data diverges.
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n � Sl[�1;1](g; �n) Su[�1;1](g; �n)

26 0.1 -0.125764 -0.029083

26 0.2 -0.182791 -0.136472

26 0.3 -0.258522 -0.243816

26 0.4 -0.353779 -0.350056

26 0.5 -0.463458 -0.462669

26 0.6 -0.585668 -0.585527

26 0.7 -0.720405 -0.720384

26 0.8 -0.868216 -0.868213

24 0.9 -1.029603 -1.029602

21 1.0 -1.204878 -1.204877

18 1.1 -1.394365 -1.394363

16 1.2 -1.598595 -1.598592

15 1.3 -1.818244 -1.818242

14 1.4 -2.053908 -2.053907

13 1.5 -2.305894 -2.305893

12 1.6 -2.574156 -2.574155

11 1.7 -2.858359 -2.858358

10 1.8 -3.158009 -3.158008

10 1.9 -3.472560 -3.472560

10 2.0 -3.801508 -3.801508

10 2.1 -4.144436 -4.144436

10 2.2 -4.501038 -4.501038

10 2.3 -4.871132 -4.871132

10 2.4 -5.254652 -5.254652

10 2.5 -5.651635 -5.651635

Table 4.2: Computed values of Sl[�1;1](g; �n) and Su[�1;1](g; �n) for various �

and n for the error function learning scheme

43



0 0.5 1 1.5 2 2.5 3

0

2

4

6

Figure 4.5: Plot of h(Sl[�1;1](g; �n)) and h(Su[�1;1](g; �n)) against � for the

error function learning scheme
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Figure 4.6: Plot of equation 4.28, h(Sl[�1;1](g; �n)) and h(Su[�1;1](g; �n))

against � in the critical region for the error function learning scheme
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Therefore


(�) � �0:742225 � (4.29)

em � exp(�0:742n�)
� exp

���(erf)kn
N

�
(4.30)

where

�(erf) = 0:742. (4.31)
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Chapter 5

Ising model for the

marginalist learning scheme

In order to make analytical progress, it is useful to consider the addition

of noise to the network and then take the limit as the noise tends to zero.

The most fruitful way to do this is to model the network as a simpli�ed

description of magnetism, namely the Ising model. The noise level is usually

called the temperature T .

5.1 General principles of statistical mechanics

The basic quantity characterising a system in statistical mechanics is the

energy H(x), which is de�ned as some function of the microscopic system

state x = (x1; : : : ; xN). In general, the behaviour of the system is de�ned so

that its energy tends to its minimum value. However, no observable system

can be perfectly isolated from its surroundings and the e�ect of interaction

with it manifests itself in the form of thermal noise.

Given an observable quantity O(x), the quantity of interest in statistical
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mechanics is the time averaged value, namely

hOi = lim
t!1

1

t

Z t

0
O(x(�)) d� . (5.1)

An order parameter is an observable quantity whose time average plays

an important role in describing the macroscopic characteristics of the model.

The fundamental hypothesis of statistical mechanics is that if we know

the energy H(x) for every state x of the system, then the properties of

the system, in equilibrium at temperature T , can be computed as if the

probability of �nding the system in a particular state is proportional to

exp
��H(x)

kT

�
, where k is Boltzmann's constant.

Therefore, the time average of O(x) is given by

hOi =
X

x1;:::;xN2f�1;1g
O(x)�(x) (5.2)

where

�(x) =
1

Z(x)
exp(��H(x)) (5.3)

Z(x) =
X

x1;:::;xN2f�1;1g
exp(��H(x)) (5.4)

� =
1

kT
. (5.5)

Here �(x) is the probability distribution function of the system, Z(x) is

called the partition function and � is called the inverse temperature.

In statistical mechanics, it is the entropy S that characterises the prob-

ability distribution. It is de�ned as the average of the logarithm of the

distribution function.

S = �hlog �i. (5.6)

In general, entropy is a measure of the degree of disorder in a system.

We can illustrate this with a simple example. Imagine a system whose states

have a probability distribution such that L states have equal probability 1
L
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and all other states have probability zero. According to the de�nition of

entropy

S = �
LX
l=1

1

L
log

�
1

L

�
= logL.

Therefore, the more broad the distribution, the larger the entropy. On

the other hand, the more narrow the distribution, the smaller the entropy.

In the extreme case with only one state, the entropy is zero. In Nature,

systems change so as to increase their entropy in order to achieve maximum

disorder. In a sense, noise is natural.

According to the basic hypothesis, the time average of the energy is

E � hHi =
X

x1;:::;xN2f�1;1g
H(x)�(x). (5.7)

The free energy F of the system is de�ned as

F = E � TS (5.8)

and is the natural extension of the energy landscape description to situations

with noise. In other words, the system seeks to minimise its free energy.

The partition function de�ned in equation 5.4 plays a crucial role because

all the observables described above can be derived from it using the following

equations [8]

F = � 1

�
log(Z) (5.9)

E = � @

@�
log(Z) (5.10)

S = = �2
@F

@�
. (5.11)

5.2 Magnetic Ising spin system

In magnetic materials, the microscopic state of the system is determined by

the spin orientations of the component electrons.
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In the Ising spin system, we model this by the microscopic system state

x = (x1; : : : ; xN), where xi is the spin state of electron i, which takes the

value 1 for \up" and �1 for \down".

Traditionally, the microscopic energy (also called the Hamiltonian) has

the form

H = �
X
hi;ji

Jijxixj � h
NX
i=1

xi. (5.12)

Here the notation hi; jimeans nearest neighbours only, Jij are the spin-spin

interactions and h is the external magnetic �eld.

5.3 Mean-�eld approximation

Although, this model seems very simple, it is a fact that an exact solution [5,

3] (which involves calculating the partition function) has only been found

for the one- and two-dimensional cases with zero external magnetic �eld.

The only way progress has been made with other cases has been by

making some form of approximation. One of the simplest is called the mean-

�eld approximation. This involves assuming that x1; : : : ; xN are independent

and identically distributed variables in the equilibrium state.

�(x) =
NY
i=1

�(xi) (5.13)

5.4 The replica method

Sherrington and Kirkpatric [31] introduced the model of a spin glass de-

scribed by the Hamiltonian

H = �1

2

NX
i6=j

Jijxixj (5.14)

where Jij is symmetric. This model has recently acquired new signi�cance

because it appears to provide a fruitful model for neural networks with noise.
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The replica method was invented by Emery [15] and provides a way to

make analytical progress on this model. It was intended to deal with cases

where averaging �(x) was easy, but averaging log(�(x)), in order to evaluate

the free energy, was di�cult. The idea is based on the following limiting

form.

lim
n!0

Zn � 1

n
= logZ (5.15)

Although, no one has proved whether this is sound, it does seem to work.

Note that Zn is the partition function of n non-interacting identical

copies of the original system, known as replicas.

5.5 Replica symmetric solution

We are particularly interested in the model studied by M�ezard, Nadal and

Toulouse [26] with the general storage prescription

Jij =
1

N

MX
n=1

�

�
M + 1� n

N

�
Xn
i X

n
j (5.16)

where �(x) is any positive function such that

Z 1

0
�2(x) dx = 1 (5.17)

and for the marginalist storage prescription in particular

�(x) = " exp

�
�1

2
x"2

�
. (5.18)

The free energy can be evaluated using the replica method. The resulting

equations are very complex [2] and involve various two dimensional matrices.

To make further progress, we assume that the matrices contain identical

elements. This is known as the approximation of replica symmetry.

In the limit as � ! 1, the following equations for the N + 2 order

parameters fmn j 1 � n � Ng [ fq; rg crystallise out [26]
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mn =

8><
>:

m if n = �N

0 otherwise
(5.19)

q = 1� C

�
(5.20)

r =
Z 1

0

�
�(x)

1� C�(x)

�2
dx (5.21)

where

m = erf(m�) (5.22)

C =

r
2

�r
exp

�
�m2�2

�
(5.23)

� =
�(�)p
2r

(5.24)

erf(x) =
2p
�

Z x

0
exp

�
�y2

�
dy. (5.25)

5.6 Phase space and the order parameters

Broadly speaking a neural network has three states in phase space.

� The ferromagnetic state occurs at low temperature and the system

behaves like an associative memory

� The spin glass state also occurs at low temperature, but is charac-

terised by the system being frozen into a random state

� The paramagnetic state occurs at high temperature where the system

converges to a state distribution which is independent of the initial

state

It is worth considering what the order parameters represent.

mn =
1

N

NX
i=1

Xn
i hxii

q =
1

N

NX
i=1

hxii2
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The order parameter mn is the time averaged overlap between the pat-

tern Xn and the state of the system. So when this value is close to one, it

means that that pattern is being retrieved with good quality and the system

is in a ferromagnetic state. However, when all the time averaged overlaps

are zero, it may indicate the spin glass state or the paramagnetic state.

The Edwards-Anderson order parameter q allows these states to be dis-

tinguished. In the spin glass state, xi is frozen and so hxii = �1 implying

q = 1. In the paramagnetic state xi is randomly 
uctuating and so hxii = 0

implying q = 0.

Finally, the order parameter r represents the noise due to the overlap of

unwanted patterns, so r must be low for retrieval to be good.

5.7 Critical values in the phase space

Numerical analysis [26] of equations 5.18, 5.19, 5.21, 5.22, 5.23, 5.24 and 5.25

of the kind shown below in Mathematica

In[1] :=

rrrr[x_] :=

-2(x + (1 - x) Log[1 - x]) / (x^2 (x - 1));

rrr[c_, e_] := rrrr[c e];

rr[m_, n_, e_] :=

x /. FindRoot[

x == rrr[Sqrt[2 / (Pi x)] Exp[- n^2 m^2], e],

{x, 1}];

nn[m_] := n /. FindRoot[Erf[m n] == m, {n, 1}];

aaa[m_, n_, e_] := Log[2 rr[m, n, e] n^2 / e^2] / e^2;

aa[m_, e_] := aaa[m, nn[m], e];

In[7] :=

FindMinimum[aa[m, e], {m, 0.97, 0.98}, {e, 4, 4.1}]

52



Out[7] :=

{-0.0489585, {m -> 0.971971, e -> 4.10812}}

In[8] :=

FindMinimum[aa[m, 2.464805], {m, 0.97, 0.98}]

Out[8] :=

{5.29038 10^-8 , {m -> 0.933347}}

In[9] :=

FindMinimum[aa[m, 2.464815], {m, 0.97, 0.98}]

Out[9] :=

{-1.00144 10^-6 , {m -> 0.933347}}

reveals that they have no solution with m 6= 0 for " < "c where

"c = 2:46481. (5.26)

For " = "c, there is one stable solution with � = 0 and m = mc where

mc = 0:933347. (5.27)

For " > "c, there are two solutions with m 6= 0, but only the highest

value is stable and m > mc. The maximum value for � is attained at

"opt = 4:10812 (5.28)

with a capacity of

�opt = 0:0489585. (5.29)

Figure 5.1 shows the graph of storage capacity � against � for the

marginalist learning scheme plotted using the following additional com-

mands in Mathematica.

In[10] :=

maa[e_] := -FindMinimum[aa[m, e], {m, 0.97, 0.98}][[1]];
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Figure 5.1: Plot of storage capacity � against " for the marginalist learning

scheme

Plot[

maa[e],

{e, 2.47, 6},

Frame -> True,

PlotRange -> {{0, 6}, {0, 0.06}}];

5.8 Crude upper bound of the storage capacity

Just as an aside, we can �nd an upper bound analytically for the storage

capacity �. Equations 5.21 and 5.18 give

r =
�2(c"+ (1� c") log(1� c"))

c2"2(c"� 1)
(5.30)

and from equations 5.24 and 5.18, we have

� =
1

"2
log

 
"2

2r�2

!
. (5.31)
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For constant r and �, � is maximised by setting

" = �
p
2re. (5.32)

Therefore

� � 1

2re�2
. (5.33)

But from equation 5.30 it is can be shown that r � 1 and from equa-

tion 5.22 that � �
p
�

2 , therefore

� � 2

�e
� 0:234. (5.34)

This implies that patterns greater than 0:234N are forgotten.
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Chapter 6

Storage capacity for the

smooth learning scheme

In this chapter, we will derive the critical values for k in the hyperbolic

tangent and error function learning schemes.

6.1 Embedding strength to storage capacity

We need to show the connection between the embedding strengths computed

in chapter 4 and the marginalist storage prescription described in chapter 5.

From equations 4.1 and 5.16, we have

em =
1

N

NX
i;j=1

 
1

N

MX
k=1

�

�
M + 1� k

N

�
Xk
i X

k
j

!
Xm
i X

m
j

=
1

N2

MX
k=1

�

�
M + 1� k

N

� NX
i=1

Xk
i X

m
i

!2

.

Pulling out the term k = m gives

em = �

�
n

N

�
+

1

N2

MX
k=1;k 6=m

�

�
M + 1� k

N

� NX
i=1

Xk
i X

m
i

!2

(6.1)

where n = M + 1�m.
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Recall that fXm j 1 � m �Mg are random patterns. Therefore, by the

central limit theorem 1p
N

PN
i=1X

k
i X

m
i tends to a gaussian random variable

with zero mean and variance one as N ! 1. Therefore, the second term

in equation 6.1 tends to a gaussian random variable with zero mean and a

variance of

�2 ! 1

N2

MX
k=1;k 6=m

�2
�
M + 1� k

N

�

! 1

N

Z 1

0
�2(x) dx

=
1

N

! 0.

So for large N

em � �

�
n

N

�
. (6.2)

But

em � exp

�
��kn

N

�
(6.3)

where � is a function of the function � used in the smooth learning scheme.

Therefore, using equation 5.18

k =
"2

2�
. (6.4)

6.2 Critical values for the hyperbolic tangent scheme

Figure 6.1 shows the graph of storage capacity � against the parameter k

for the hyperbolic tangent learning scheme.

No patterns are stored for k < kc where

kc =
"2c

2�(tanh)
= 3:68 (6.5)

and the optimal value for k is

kopt =
"2opt

2�(tanh)
= 10:2. (6.6)
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Figure 6.1: Plot of storage capacity � against the parameter k for the hy-

perbolic tangent learning scheme

6.3 Critical values for the error function scheme

Figure 6.2 shows the graph of storage capacity � against the parameter k

for the error function learning scheme.

No patterns are stored for k < kc where

kc =
"2c

2�(erf)
= 4:09 (6.7)

and the optimal value for k is

kopt =
"2opt
2�(erf)

= 11:4. (6.8)

6.4 Theoretical storage capacity

The striking result is that the optimal storage capacity 0:0489585 is indepen-

dent of the function � chosen in the smooth learning scheme. The function

� only a�ects the actual value of k that gives rise to this optimal storage

58



5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 6.2: Plot of storage capacity � against the parameter k for the error

function learning scheme

capacity.

�opt = 0:0489585 (6.9)

kopt =
"2opt
2�(�)

(6.10)

6.5 Experimental storage capacity

In order to con�rm, that the theoretically derived storage capacities as de-

picted in �gures 6.1 and 6.2 correspond to reality, we constructed a forgetful

neural network with 1500 neurons utilising the smooth learning scheme and

performed a number of experiments.

For the hyperbolic tangent learning scheme, we stored 375 randomly gen-

erated patterns using 5 di�erent values of k and then evaluated the retrieval

quality m of the 90 most recently stored patterns. The results are shown

postscriptally in �gures 6.3, 6.4, 6.5, 6.6 and 6.7.
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Figure 6.3: Plot of retrieval quality using the hyperbolic tangent learning

scheme with k = 5 against the ratio n
N
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Figure 6.4: Plot of retrieval quality using the hyperbolic tangent learning

scheme with k = 7 against the ratio n
N
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Figure 6.5: Plot of retrieval quality using the hyperbolic tangent learning

scheme with k = 10:2 against the ratio n
N
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Figure 6.6: Plot of retrieval quality using the hyperbolic tangent learning

scheme with k = 15 against the ratio n
N
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Figure 6.7: Plot of retrieval quality using the hyperbolic tangent learning

scheme with k = 19 against the ratio n
N

The black lines show the theoretical retrieval quality m of pattern n

against the ratio n
N
in the limit as N !1. The theoretical storage capacity

� corresponds to the value of n
N

where the black line drops to zero. The

grey lines show the actual retrieval quality m of pattern n against the ratio

n
1500.

A similar experiment was conducted with the error function learning

scheme and the corresponding graphs are shown in �gures 6.8, 6.9, 6.10,

6.11 and 6.12.

The correlation between the black and grey lines is not overwhelming,

but then again the grey lines only correspond to single runs.

So, we ran the hyperbolic tangent learning scheme with k = 10:2 and the

error function learning scheme with k = 11:4 ten times to give �gures 6.13

and 6.14. These show a much better correlation, particularly with regard to

the storage capacity.
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Figure 6.8: Plot of retrieval quality using the error tangent learning scheme

with k = 5 against the ratio n
N

where N is the total number of neurons
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Figure 6.9: Plot of retrieval quality using the error function learning scheme

with k = 7 against the ratio n
N
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Figure 6.10: Plot of retrieval quality using the error function learning scheme

with k = 11:4 against the ratio n
N
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Figure 6.11: Plot of retrieval quality using the error function learning scheme

with k = 15 against the ratio n
N
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Figure 6.12: Plot of retrieval quality using the error function learning scheme

with k = 19 against the ratio n
N
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Figure 6.13: Plot of retrieval quality using the hyperbolic tangent learning

scheme with k = 10:2 against the ratio n
N
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Figure 6.14: Plot of retrieval quality using the error function learning scheme

with k = 11:4 against the ratio n
N
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Figure 6.15: Plot of remembered patterns ratio and theoretical storage ca-

pacity against � for the hyperbolic tangent learning scheme
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Figure 6.16: Plot of remembered patterns ratio and theoretical storage ca-

pacity against � for the error function learning scheme

Alternatively, �gures 6.15 and 6.16 show the number of patterns that

are remembered by the neural network as a ratio of the total number of

neurons, where by de�nition [29] the pattern is remembered if no more than

2% of the neurons in the �nal con�guration di�er from the stored pattern.

6.6 Exploration of other schemes

What happens if we drop the restriction that �0(0) = 1 for the smooth

learning scheme?

Let

a = �0(0)

and suppose a < 1, then it is can be seen that the associated fractal proba-

bility distribution exists and is unique by following the same argument as in

section 3.2. It then follows that the embedding strength decay rate is given

by equation 4.5 using the same argument as in section 4.2.
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Let us consider analytically the Lyapunov exponent for small �. As

before, using Maclaurin's expansion for �(x), we have

�(x) = ax+ bxr + O(xr+2)

where for the sake of brevity

b =
�(r)(0)

r!

and we know that b < 0.

We know that x+ satis�es

x+ = �(x+ + �)

and the inverse of � is well de�ned because � is monotonically increasing,

therefore

� = ��1x+ � x+

� 1� a

a
x+ � b

ar+1
xr+ + O(xr+2

+ ).

Therefore, it can be shown that

x+ � a

1� a
�+

b

(1� a)r+1
�r +O(�r+2).

Therefore

Su[x
�

;x+](g; �0) = g(��)
= log�0(0)

= log a

Sl[x
�

;x+](g; �0) = g(x+)

� log a+
r b

(1� a)r�1a
�r�1 + O(�r+1).

Therefore, for su�ciently small �

(r + 1) b

(1� a)r�1a
�r�1 < 
(�)� log a � 0.
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In other words, 
 ! log a as �! 0.

However, we need 
 � ���. This is satis�ed by

a = 1� ��. (6.11)

Using equations 3.9 and 6.4, we have

a = 1� "2

2N
. (6.12)

So, no patterns are stored for " < "c and the optimal value is " = "opt.

Suppose a > 1, then for su�ciently small �, �+ � �� has three �xed

points. Therefore the corresponding IFS is not weakly hyperbolic by propo-

sition 3.2.1 and so we cannot make any theoretical progress.
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Chapter 7

Conclusion

In this report, we have illustrated in a striking manner the union of three

seemingly unrelated subjects, namely that of domain theory, statistical

physics and neural networks.

We showed that the stored patterns in a forgetful neural network using

the smooth learning scheme can be represented by a non-deterministic dy-

namical system with a unique fractal probability distribution. More specif-

ically, we derived an approximating sequence for the distribution using a

domain theoretic approach.

This approximating sequence allows us to compute the expectation of

any continuous function over a fractal probability distribution using a gen-

eralised form of Riemann integration to any desired accuracy. In particular,

we were interested in the embedding strength decay rate of the stored pat-

terns, which just so happens to correspond to the Lyapunov exponent of the

identi�ed dynamical system.

By numerically analysing the asymptotics, we were able to estimate the

decay rate for a large neural network. Speci�cally, we evaluated the decay

rate 
 for the hyperbolic tangent and error function learning schemes.


 =
��(�)k
N
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�(tanh) = 0:826

�(erf) = 0:742

We then showed that a neural network using the smooth learning scheme

is equivalent to a neural network using the marginalist learning scheme

through the simple equation

k =
"2

2�(�)

where k and � parameterises the smooth learning scheme and " parame-

terises the marginalist learning scheme.

This was a useful step because we were then able to use the solution

of an Ising model from statistical physics that generalised the marginalist

learning scheme. The solution gives a storage capacity for each value of the

parameter " and therefore for k and � as well and showed that the maximum

attainable storage capacity is 0:0489585N , where N is the total number of

neurons.

Finally, we constructed a neural network with 1500 neurons and showed

that the experimental storage capacities were consistent with those derived

theoretically. However, more work needs to be done here in order to prove a

connection beyond doubt. Much larger neural networks and averaging over

many runs is required. Current technology would require massive parallelism

to achieve this.
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